Wednesday, May 17, 2023

Review of “Innate,” by Kevin Mitchell



Innate,” by the neurogeneticist Kevin Mitchell, explores the case for a genetic and neurodevelopmental origin of individual differences in intelligence and other human character traits. As the title suggests, the book generally leans toward “nature” in the nature vs. nurture debate, and makes the assumption that “innate” implies a genetic origin, although with a more dynamic view of the path from gene to trait than one sees in Robert Plomin’s “Blueprint” or Katherine Paige Harden’s “Genetic Lottery” (links to my reviews of those books at the end of this review).

The question of the nature of individuals and how that nature arises has existed, in one form or another, for as long as human civilization, but took a specific turn in our own with the work of Charles Darwin or, more specifically, the work of his second cousin, Francis Galton, the eugenicist and polymath who applied Darwin’s evolutionary theories to human behavior and intelligence and actually coined the term “nature versus nurture.” 


Galton’s eugenic ideas have inspired quite a bit of misery and Mitchell rightly condemns these ideas. Nonetheless, he is often complimentary of Galton’s statistical  work related to trait heritability, which I find unfortunate. I don’t think one can simplistically separate this from Galton’s eugenic ideas, which were arguably the driving force behind his math, and which is still embraced by race-oriented “scientists” to this day. 


Pigeon-holing behavioral traits into mathematical boxes, so that traits like intelligence, extroversion and schizophrenia can be assessed in the same way we might assess traits like height, eye color, or other obvious physical features, or even milk production in cows is bizarre on its face and involves some unimaginative assumptions about the nature and complexity of human beings, while also ignoring ongoing philosophical debates and simplifies individual human nature down to an assumption that it must be related to differences in genetics and neurodevelopment. 


Mitchell uses the analogy of a robot being programmed, to explain his view of the mind, with  “computational algorithms of decision-making,” and  “neuromodulator circuits …tuned - they work differently in each of us, thus influencing the habitual behavior strategies we each tend to develop.”   Mitchell suggests that “brain circuits” develop with some variation in individuals that make “major contributions to our psychological traits.” None of this is demonstrable, and is the kind of theoretical understanding of the brain-as-computer you find in his field. Unfortunately, Mitchell largely sells it as a factual representation of the human mind, rather than his theoretical viewpoint, a recurring theme in this book.  I think he could use far more qualifiers when presenting his ideas.